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ABSTRACT 
 
 
 
Boost-phase intercept of a threat intercontinental ballistic missile (ICBM) is the 

first layer of a multi-layer missile defense strategy. Space-based interceptors possess cer-

tain kinematic advantages over ground-based interceptors in defeating an ICBM threat 

during boost phase. This paper explores the performance of various guidance laws that 

might be used by an exo-atmospheric kill vehicle (EKV) launched from a space platform 

to defeat a hostile, ground-launched ICBM during boost phase. Proportional navigation 

guidance, bang-bang guidance and predictive guidance are investigated using simulated 

missile and EKV trajectories. Performance results are presented with respect to miss dis-

tance, intercept time, launch envelope, and total control effort. The total control effort is 

directly related to fuel consumption, and smaller values translate to less weight in fuel or 

longer potential intercept ranges. Large launch envelopes mean fewer required EKV car-

riers. In general, the predictive guidance algorithm outperforms the other guidance algo-

rithms in these simulations, but it did prove to be sensitive to time-to-go errors. 
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I. INTRODUCTION  

The objective of this paper is to show the performance comparison between vari-

ous guidance laws which could be used by a space launched interceptor to engage and 

destroy a hostile ICBM during its boosting phase. The interceptor in this research is an 

exo-atmospheric kill vehicle (EKV), which is modeled as a point mass using divert 

thrusters to achieve velocity changes. The guidance laws to be compared are proportional 

navigation, bang-bang, and predictive guidance. Proportional navigation is a robust algo-

rithm that is widely used in all forms of intercept guidance, and it acts as our baseline in 

this study. The performance analysis of proportional navigation guidance was shown by 

Paul Zarchan[1] in tactical and strategic missile design through linear analysis or adjoint 

method in various conditions. Bang-bang guidance is generally not used inside the at-

mosphere because it tends to produce excessive drag on the interceptor, but this disadvan-

tage does not apply to an EKV. In the hybrid guidance for the ballistic missile intercept, 

Aydin[2] tried the bang-bang guidance at the initial guidance only to turn the missile 

quickly toward the target. Bang-bang control usually leads to minimum time intercept, 

and it was felt initially that this might lead to lower control effort. Also, bang-bang guid-

ance requires any divert thruster to always fire at its maximum value or not at all, which 

is how many divert thrusters are actually designed to operate. Predictive guidance relies 

on utilizing more information about target kinematics, especially time-to-go information, 

and it is expected to utilize less control effort as a consequence. Paul Zarchan established 

the equations of predictive guidance using zero-effort-miss that reflects the correct target 

and missile information[5]. It also showed the superiority of the predictive guidance as 

“mother of all guidance laws” in which the predicted intercept is calculated in flight by 

rapidly integrating the nonlinear missile and target equations forward in flight at each 

guidance update[3]. Hari B. Hablani studied the predictive guidance in ballistic missile 

intercept using the seeker line-of-sight rate and burn time control of divert thruster. It 

showed some superiority of predictive guidance in the respect of less control effort[4]. 

This paper investigates these guidance laws using acceleration command loop in the 
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space-based EKV and shows the comparisons in various performance parameters through 

computer simulation using matlab and simulink. 

The performance measures used for comparison are miss distance, total control 

effort, intercept time, and launch envelope. Most proposals for EKV systems use a hit-to-

kill architecture. Hence, miss distance must be small enough to actually hit the target. 

Larger miss distances are deemed unacceptable. A space-based EKV carrier needs to 

maximize the number of interceptors it can carry within limited volume and mass to op-

timize mission effectiveness. Therefore, minimizing fuel consumption, which means 

minimizing total control effort, can reduce both volume and mass for each individual 

EKV. Both total control effort and intercept time were studied for each guidance algo-

rithm. The launch envelope of a single EKV interceptor is an important performance pa-

rameter because, for a given level of coverage, the required number of EKV carriers de-

creases as the launch envelope of each EKV interceptor increases. 

 

The overall space-based ICBM defense scenario is illustrated in Figure 1. In this 

scenario, several EKV carriers are placed in low-earth orbit to cover all possible ICBM 

threats. A hostile ICBM launch is detected by IR sensors in geosynchronous orbit and 

subsequently tracked by a network of RF sensors in various locations, as depicted in the 

diagram. The track information is fused at a central location where an engagement deci-

sion can be made. When an interceptor launch decision is made, the EKV is launched 

from the appropriate EKV carrier onto a collision trajectory. The guidance method and 

application will be discussed in Section IV.  
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Figure 1.  Overall space-based ICBM defense scenario. 

 

In this study, the exo-atmospheric kill vehicle (EKV) is required to hit the hostile 

ICBM for a successful intercept to occur. The acceleration guidance commands are gen-

erated using thrusters in the vertical and horizontal dimensions on the EKV, which is 

modeled as a point mass in these simulations. All simulations have been implemented us-

ing MATLAB and SIMULINK. 
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II. ICBM DYNAMICS AROUND A ROTATING EARTH 

The target ICBM in this study is a solid propellant, three stage, boosting missile 

reaching speeds above 6 km s at the end of its boost phase. The trajectory of the ICBM is 

derived as a function of the thrust that is generated by the solid propellant, the gravita-

tional effects, the atmospheric drag and the rotation of the earth. The ICBMs are assumed 

to be launched from a hostile location in the west Pacific targeting San Francisco, Cali-

fornia. 

 

BOOSTING TARGET MODELING 

The drag forces acting on the missile and the angular velocity resulting from the 

earth’s rotation are considered, and a closed form solution is generated as a function of 

these forces, along with the thrust and the weight. 

 

1. BOOSTING ICBM MATHEMATICAL MODELLING 

In this section, we derive the mathematical model for a boosting ICBM that takes 

the earth’s rotation and the atmospheric drag into account. Kashiwagi derives a full 

mathematical model for re-entry vehicles, where the non-accelerating vehicle is released 

from space[5]. We adopt his derivation for ground-based boosting ICBMs by adding the 

thrust force generated by the solid propellant fuel. 

The state vector of the ICBM is defined as a function of its position and velocity 

and denoted by 

      [ ]T T
x y zX x y z V V V x y z x y z⎡ ⎤= =⎣ ⎦                                            (1) 

Representing these equations in ( )0X FX t t= − format will require defining the 

state transition matrix F . The transition matrix is given by  
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0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2 0 0 2 sin 2 cos3 2

2 20 sin sin cos 2 sin 03 2

2 20 sin cos cos( ) 2 cos 03 2

mgIGM gsp
mVF r

mgIGM gsp
mVr

mgIGM gsp
mVr

ρω ω μ ω μ
β

ρω μ ω μ μ ω μ
β

ρω μ μ ω μ ω μ
β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− − −⎢ ⎥
= ⎢ ⎥
⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎢ ⎥
⎣ ⎦

             

(2) 

where 

-11

24

 : earth rotation rate (2π/day)
 : gravitational constant of earth (6.67 10 )
 : mass of earth (5.98 10  kg)

 : distance of the target from earth's center(km)
 : mass change rate of the target IC

G
M
r
m

ω

×

×

BM (kg/s)
 : specific impulse of the target ICBM(sec)

 : total mass of the target ICBM(kg)
spI

m
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 : magnitude of the velocity of the ICBM(km/sec)

 : atmospheric density (kg/m )
 : ballistic coefficient
 : geodetic latitude of the target ICBM(radian)

V

ρ
β
μ

 

The parameter t is the time of interest and to is the initial time. 

The initial state space vector of the ICBM is given in equation(3). 

-3029966.67
3737980.67
4186406.53

-279.69
20.81

479.46

T

T

T
T

T

T

T ECEF

x
y
z

X
x
y
z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

                                  (3) 
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2. Initial Values of ICBM Launch Angles  

 

The azimuth launch angle C is measured in the topo-centric coordinate system 

from the North Pole to the tip of the missile. The measurement is taken from north to 

east. Consider the triangle ABC shown in Figure 2 as the launch geometry, where C is the 

launch point and B is the target location. The North Pole is denoted by A in this geome-

try. The initial azimuth launch angle of the ICBM is denoted by C.  

eR
W

A

B
C

a
b

c

 
Figure 2. Launch parameter geometry. 

 

The lowercase letters in Figure 2 correspond to the angles subtended by the arcs 

measured form the center of the earth. The capital letters in Figure 2 correspond to the 

angles formed by the intersecting arcs. Note that angle C is the azimuth launch angle. Us-

ing the law of sines, we can obtain the relationship among the angles as 

 sin sin
sin sin

a c
A C
=   
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By rearranging above, the azimuth launch angle can be written as 

 sin sintan
sin cos

c AC
a C

=   

The denominator of above can be shown to be a function of angles a, b and c as given by 

 cos cos cossin cos
sin

c a ba C
b

−
=   

from the law of cosines: cos cos cos sin sin cos .c a b a b C= +  By substituting, the azimuth 

launch angle is obtained as 

 sin sin sintan
cos cos cos

c b AC
c a b

=
−

  

The angles A, b and c are defined by the target location and the launch site location. The 

only unknown in above is the cos a  term, which in turn can be written as a function of 

the known parameters by using the following law of cosines: 

 cos cos cos sin sin cosa b c b c A= +   

The known angles mentioned above are defined using the geodetic locations of 

the target and the launch site as  

 
2

2

o

o

A

b

c

λ λ
π μ

π μ

= −

= −

= −

  

where λ is target geodetic longitude, μ is target geodetic latitude, oλ is launch site geo-

detic longitude, and oμ is launch site geodetic latitude. 

Using above, we can show the azimuth launch angle to be a function of geodetic 

locations and the cos a term as given by 

 ( )cos cos sin
tan

sin cos sin
o o

o

C
a

μ μ λ λ
μ μ

−
=

−
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The azimuth launch angles from Kilju-kun, North Korea, Xining, China and Bushehr, 

Iran to San Francisco (N37.76 W122) are calculated by using above. The results are tabu-

lated in Table 1 in which the azimuth launch angles are defined from the North Pole 

eastward.  

Table 1. Azimuth launch angles for launch attitude 

Launch Site North Korea 

Location (geodetic) N41-E129 

Azimuth launch angle (degrees) 40.37 

 

The elevation angle for the ICBM is calculated using the Lambert guidance. 

Lambert guidance will put the ICBM on a collision triangle that is moving in a gravity 

field. We will solve the Lambert’s problem using a numerical method. In this solution, 

we assume a flat earth and use topo-centric coordinates. The elevation angle of the ICBM 

is denoted by γ  and measured from the earth’s surface to the tip of the missile. The cen-

tral angular distance to be traveled is denoted by φ  and measured from the earth’s center 

between the target location and the launch location. The radius of the earth is denoted by 

Re. Note that  gives the required velocity of the ICBM for a given distance. Since the 

launch point and target location are both on the ground,  

 o er a R= =   

is a valid statement. Using above, we can get the required velocity equation in closed 

form  

 ( )
( ) ( )( )

1 cos
cos cos cosreq

e

Gm
V

R
φ

γ γ φ γ
−

=
− +

  

The time of flight for the ICBM can be calculated by using the formula for the el-

liptical travel as given by  
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( )

( ) ( )

( ) ( )

( )
( )
( )

2

1
1.5

tan 1 cos 1 sin
cos cos1 cos2

cos cos

2 12cos tan
cos cot 2 sin2 1

e
F

req

Rt
V

γ φ λ φ
γ γ φφλ

λ γ γ

λγ
γ φ γλ λ

−

⎧
⎪ − + −⎪= ⎨

+⎡ ⎤−⎪ − +⎢ ⎥⎪ ⎣ ⎦⎩
⎫⎛ ⎞− ⎪⎜ ⎟+ ⎬⎜ ⎟−−⎡ ⎤ ⎪⎣ ⎦ ⎝ ⎠⎭

  

where λ is a constant and is given by  

 
2

req eV R
Gm

λ =   

The central angular distanceφ can be calculated using the position vectors of the 

launch point and the target location:  

 1cos i t

i t

r r
r r

φ − ⋅
=   

where ir  and tr  are the launch point position vector and target location position vectors, 

respectively, in the ECEF coordinate system.  

By substituting and solving for the elevation angle, we obtain the minimum and 

maximum possible elevation angles as follows: 

 

( )
( )

( )
( )

1
min

1
max

sin 2 1 cos
tan

1 cos

sin 2 1 cos
tan

1 cos

φ φ
γ

φ

φ φ
γ

φ

−

−

⎛ ⎞− −
⎜ ⎟=
⎜ ⎟−⎝ ⎠
⎛ ⎞+ −
⎜ ⎟=
⎜ ⎟−⎝ ⎠

  

We will use the method described in to find the elevation angle corresponding to 

the desired flight time, which is calculated by using above. The flight time is calculated 

iteratively by using elevation angles between the minγ and maxγ  in order to reach a value 

that is satisfactorily close to the desired flight time as follows 
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( )( )

1

1
1

des n

n n

n n F F
n n

F F

t t

t t

γ γ
γ γ

−

−
+

− −
= +

−
  

where n is the index of iteration. The elevation angleγ  is computed for North Korea, 

China and Iran are 54.22o, 55.98o and 58.92o, respectively.  

Note that the Lambert Solution assumes an impulsive missile moving in free 

space. However, the ICBM model created is a three-stage solid-propellant missile, hence 

the actual elevation angles for a boosting ICBM moving on a rotating earth and in the at-

mosphere are different from the above values. The elevation angle for a boosting missile 

should be above 80o to overcome the gravity force and avoid hitting the ground. To find 

the accurate elevation angles, the three-dimensional motion simulation is run and the re-

sults are reported in the following section. 

The stage total masses, the propellant masses and mass fractions of the ICBMs are 

given in Table 2. 

  Stage 1 Stage 2 Stage 3 Payload Mass Fraction 

Total mass (kg) 49000 27670 7711 2268 

Propellant mass (kg) 41640 23520 6554 0 

Propellant mass (kg) 45640 25520 7554 0 

N
or

th
 K

or
ea

 

Propellant mass (kg) 46640 26520 8554 0 

83% 

Table 2. Propellant mass and mass fractions of the ICBM 
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III. EKV AND EKV CARRIER MODELLING 

In this section, we will describe the configuration and specifications of the space-

based exo-atmospheric kill vehicle (EKV) carriers and the EKV itself, and determine an 

initial launch condition from the orbit in which to place these EKV carriers in order to in-

tercept an ICBM launched from the specified launch site. For the given launch location, 

we need a circular orbit with an altitude of 1000 km, an inclination angle of 43.5o and a 

right-ascension angle of 15.3o, conditions which were derived by Aydin[2]. 

  

A. INTERCEPTOR MISSILE MODELING 

In this study, we will model an EKV that conducts a hit-to-kill intercept. Hit-to-

kill interception is selected because the damage applied in space is significantly more 

than the damage applied by conventional explosive interceptors. The EKV must hit the 

payload section of the ICBM in order to assure the desired hard kill.  

Raytheon has developed a ground-based EKV and tested it successfully. The 

model of the EKV considered in this study will be based on the specifications of the Ray-

theon EKV. We will use this model as a space-based EKV instead of a ground-based 

EKV. The Raytheon’s EKV is shown in Figure 3[8]. 

The EKV has onboard sensor optics to track the target and a guidance unit, which 

improves the target data refresh rate and decreases the delay between the tracking and 

guidance application.  

The EKV weighs 64 kg with a length of 139.7 cm and a diameter of 61 cm. We 

added a 136 kg booster to the EKV to give it the initial velocity when launched from the 

EKV carrier. The solid propellant in the booster is 100 kg, which makes the EKV’s total 

mass 200 kg.  
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Figure 3. Raytheon’s exo-atmospheric kill vehicle[8].  

 

The EKVs are stored in a space-based EKV carrier, which is assumed to hold 

multiple EKVs. The EKV carriers travel on an orbit that provides enough kinetic energy 

to allow the EKVs to succeed in destroying the ICBM before it delivers the reentry vehi-

cles (RVs).  

The EKV is modeled using the same methodology that was introduced in Section 

II. The EKV boosts for ten seconds and then moves into the gravity field with the guid-

ance command. The guidance command is applied in pitch and yaw axis.  

The altitude of the orbit and the maximum range of the EKV together determine 

the down-look launch angle ξ  and the coverage angle α as shown in Figure 4[2]. Here 

we assume that the EKV cannot achieve a successful intercept after it passes over the de-

sired intercept point due to its huge initial velocity in the direction of the orbit. 
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ξ

 
 

Figure 4. Orbital plane and the intercept geometry[2]. 
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IV. EKV GUIDANCE METHODS 

This section will investigate different guidance laws for space-based interception 

of hostile ICBMs launched from some hostile location. The proportional navigation guid-

ance (PNG), predictive guidance (PREDG) and bang-bang guidance (BBG) laws will be 

introduced and a three-dimensional implementation will be presented. The total com-

manded acceleration, intercept time, and miss distance generated by these guidance laws 

with the various error levels will be the major parameters considered to compare their 

performance.  

 

A. DESCRIPTION OF THE SCENARIO 

The interceptor missile is a one-stage, boosted, exo-atmospheric kill vehicle 

(EKV) orbiting in a circular orbit with an inclination angle of 43.52oi = , a right-

ascension angle of 15.28oΩ =  and an altitude of ra=1000 km. The target ICBMs are 

ground launched in the western Pacific and are targeting the city of San Francisco, Cali-

fornia.  

 

B. COORDINATE SYSTEMS AND COORDINATE CONVERSIONS 

In this section, three different coordinate systems will be introduced. First, the 

common coordinate system that will be used in the calculations will be the Earth-centered 

Earth-fixed (ECEF) coordinate system (XE,YE,ZE). The ECEF coordinate system is a 

three-dimensional orthogonal Cartesian coordinate system with the origin at earth’s cen-

ter. The x-axis passes through Greenwich (E0), the y-axis passes through E90 and the z-

axis passes through the North Pole. The spherical earth rotates about the z-axis. We as-

sume that the earth is a perfect sphere and the angular rotation of the earth will be in-

volved in the computations. The second coordinate system is the Airframe Body Coordi-

nates (ABC), which is a rotating system with the airframe of the vehicle (XM, YM, ZM  for 

EKV or XT, YT, ZT  for ICBM). The x-axis of this coordinate system lies within the veloc-

ity vector of the vehicle, assuming that the velocity vector and the missile body are 
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aligned. The y-axis is the left wing of this vehicle and the z-axis is orthogonal to the x 

and y-axes complying with the right hand rule. The third coordinate system is the line of 

sight coordinate system (LOS). This is a two-dimensional coordinate system, which can 

also be referred to as the LOS plane (YL, ZL). The EKV position relative to the ICBM is 

defined by using this coordinate system. The distance YL is the LOS vector projected on 

the equatorial plane and the distance ZL is the LOS vector projected on the z-axis of the 

ECEF coordinate system. The LOS plane and the ECEF coordinate system are illustrated 

in Figure 5. 

The missile and target parameters, such as velocity and acceleration, are defined 

in the ABC coordinate system, and the computations are conducted in the common coor-

dinate system (ECEF). Hence, we need to define and calculate the coordinate conversions 

to transform all the coordinates to the ECEF coordinate system.  

The acceleration command will be applied to the yaw and pitch axes of the EKV, 

which are represented by XM and YM, respectively. 

Lθ

Lφ

mφmθ

tφtθ

 
Figure 5. Coordinates geometry: ECEF coordinate system, LOS 

plane, ABC system. 
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B. PROPORTIONAL NAVIGATION GUIDANCE 

The Proportional Navigation Guidance (PNG) produces a perpendicular accelera-

tion that is a function of the line of sight, closing velocity cV and the proportional naviga-

tion constant N . The block diagram of PNG is shown in Figure 6. The EKV seeker pro-

vides an accurate LOS angular velocity measurement, which will increase the perform-

ance of the intercept in our model. In the block diagram, T(s) is the transfer function of 

the guidance filter and it is assumed T(s)=1 in this report, the seeker noise is not consid-

ered. The missile dynamics in the block diagram is presented in Figure 12, where it is 

presented as the transfer function for time constant of 0.5s. 

The PNG acceleration command perpendicular to the LOS vector is 

                 cPNG Ln NV θ=                                                                                    (4) 

where   

:Navigation constant
: Closing velocity
:Line-of-sight rate

c

L

N
V
θ

 

Note that the acceleration command derived above is perpendicular to the LOS 

vector. However, we can only apply command forces perpendicular to the missile body. 

The component of this command perpendicular to the missile body is derived assuming 

that the missile velocity vector is aligned with the missile body as  

                  
cos

c L
PNG

m

NVn θ
θ

=                                                                                   (5)       

                      

 

Figure 6. Block diagram of PNG. 
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C. BANG-BANG GUIDANCE 

Bang-bang guidance (BBG) is a derivative of proportional guidance. Bang-bang 

guidance applies the maximum possible acceleration in the direction of the LOS angular 

velocity. The missiles with thrusters as the control elements apply this guidance very ef-

fectively. The guidance command is defined as a function of the LOS angle rate and the 

closing velocity as  

sgn( )bb m c Ln a V θ=                                                                 (6) 

where ma is the maximum applicable lateral acceleration of the missile. 

Defining the bang-bang acceleration command using the existing derivation for 

the PNG will make this guidance easier to implement into the model that we developed.  

The direction of the guidance command perpendicular to the missile body is derived with 

the same method we used in PNG. The unit vector, which defines the direction of the 

bang-bang acceleration command, is the same unit vector of the PNG guidance command 

and is given by  

ˆ PNG
bb

PNG

nn
n

=                                                                         (7) 

 

D. PREDICTIVE GUIDANCE 

Proportional navigation guidance requires only the line-of-sight rate and closing 

velocity of the target with respect to the interceptor. If complete kinematic information is 

available for the target ICBM, it can be exploited to improve overall system performance. 

Predictive guidance is an algorithm that seeks to improve performance by exploiting this 

additional information. The principle behind predictive guidance is quite simple. The 

block diagram of the predictive guidance is shown in Figure 7. We can define the zero ef-

fort miss to be the distance the missile would miss the target if the target continued along 
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its present course and the missile made no further corrective maneuvers[6]. Zarchan 

[1][3] has developed equations for computing the zero effort miss in ECEF coordinates as 

 

         
*

*

y TMy TMy go

z TMz TMz go

ZEM R V t
ZEM R V t

= +
= +                                                                           (8) 

                   

,

,

:Zero-effort-miss (azimuth,km)
:Zero-effort-miss (elevation,km)

:missile to target
relative position (km)

:missile to target
relative velocity (km/sec)

y

z

TMy TMz

TMy TMz

where
ZEM
ZEM
R R

V V
               

                          :Time togo (sec)got  
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Figure 7. Block diagram of predictive guidance using target and  

  missile information 
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We can find the component of the zero effort miss in the line of sight coordinates 

and then transform it into missile body coordinate. 

 

The other approach of calculating zero effort miss distance was tried using LOS 

rate from the seeker suggested by Hari B. Hablani[4][9][10] and the block diagram is 

shown in Figure 8. The zero effort miss distances are expressed as  

 

2

2

Ly c go

Lz c go

ZEM V t

ZEM V t

ψ

θ

=

=

i

i
                                                                             (9) 

: L O S ra te (a z im u th )

: L O S ra te (e le v a t io n )

L

L

w h e r e

ψ

θ

i

i

 

The acceleration guidance command should be proportional to the zero effort 

miss and inversely proportional to the square of time to go until intercept as  

2
N ZEMy

cy
go

n t=
i

                                                                                (10) 

tX

X m
Los rate
Closing velocity

Rm

Rt

got

2
*N ZEM

c
go

n t=

tX

 
Figure 8. Block diagram of predictive guidance with seeker 

LOS rate 
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V. SIMULINK SIMULATION MODEL DESCRIPTION 

The ICBM dynamics modeled in Chapter II, the EKV dynamics and orbit parame-

ters modeled in Chapter III and the three guidance rules developed in Chapter IV are im-

plemented in a SIMULINK® model.  

 

1. Simulation Initialization  
The SIMULINK® model requires initial parameters of the EKV and the ICBM to 

run the simulation. These parameters are entered by the user by running SimulationInit.m 

MATLAB® file separately. The initial parameters include the EKV launch point on the 

orbit, the ICBM launch site and the launch delay. 

The initial state vector is generated in the code for the initial point of the EKV on 

the orbit at launch. The user is asked to enter the mean anomaly time, which starts when 

the EKV passes by the equator from south to north, i.e., time zero for the EKV position 

starts at the equator. The entered time is used to calculate the position of the EKV on the 

orbit. The state vector of the EKV is then calculated and passed to the SIMULINK® 

model.  

The launch location of the ICBM and the EKV launch delay are also selected by 

the user. The three choices of launch locations are North Korea, China or Iran. The 

launch location and the initial launch parameters for a San Francisco attack of the se-

lected ICBM are predetermined. With the parameters above, the initial state vector of the 

ICBM is calculated and passed to the SIMULINK® model. The propellant masses of the 

selected ICBM are also predetermined. The MATLAB® functions that are used in this 

model are listed in Table 3. 
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Table 3. Code listing for the SIMULINK® model. 

File Name SIMULINK® Block Comments 

SimulationInit.m N/A Should be run before simulation 

ICBMmotion.m ICBM Dynamics Calculates change in ICBM state 

Seeker.m Seeker Tracks target for LOS rate and Vc 

HitDet.m Seeker Detects hit or miss and stops simulation 

PREDG.m Guidance Calculates Predictive guidance acceleration 
command 

PNGjsk.m Guidance Calculates PNG acceleration command and 
Bang-bang guidance command 

Limiter.m Guidance Limits the acceleration command  

Mag.m Guidance Calculates the magnitude of a given vector 

EKVmotion.m EKV Dynamics Calculates change in EKV state 

PlotSimResults.m N/A Plots the results that are stored in workspace 

 

 

2. SIMULINK® Model Description 
The model incorporates ICBM dynamics, seeker, guidance unit and EKV dynam-

ics in four different subsystems. The overall model is shown in Figure 9. The flow dia-

gram for the model is provided in Appendix A. 
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Figure 9. Overall space-based intercept SIMULINK® model[2].  
 

This model is capable of running for PG, PNG or HG one at a time. Adding new 

guidance methods is also possible with a new MATLAB® script file for new guidance 

methods. The model gives three options as the ICBM launch point. The subsystems of the 

model are ICBM Dynamics, Seeker, Guidance Unit and the EKV Dynamics.  

 

3. ICBM Dynamics Subsystem 

The ICBM dynamics subsystem reads the required initial parameters from the 

lookup tables. The tables read these parameters from the workspace resulting from Simu-

lationInit.m file. Initial parameters include the selected launch site, the ICBM initial pro-

pellant mass and the ICBM initial state vector.  
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In1

In2

Out1

Seeker

Out1

ICBM Dynamics

In1 Out1

Guidance Unit

In1 Out1

EKV Dynamics



 23

The subsystem for ICBM dynamics is shown in Figure 10. The ICBMmotion.m 

file calculates the time derivative of the state vector and the propellant mass, and the in-

tegrators within the model integrates these vectors and returns the results back for the 

next iteration. 

 
Figure 10. SIMULINK® model for ICBM Dynamics[2]. 

 

4. Seeker Subsystem 
The seeker provides the guidance unit with ICBM parameters, such as LOS angle, 

LOS angle rate, off bore sight angles, range and closing velocity. The miss distance is 

also measured in this unit, and the simulation is terminated upon a hit or miss. The model 

is shown in Figure 11. 
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Figure 11. SIMULINK® model for Seeker design of the EKV[2]. 

 

5. Guidance Subsystem 
The guidance subsystem of the model takes the seeker outputs as the input and 

uses them to generate the guidance acceleration command. The generated guidance 

command is filtered by a limiter for maximum acceleration capability of the EKV, and 

the total system delay is applied by the autopilot T(s). The guidance subsystem model is 

shown in Figure 12. The EKV parameters of interest are also stored in the workspace 

variables in this subsystem.  
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Figure 12. SIMULINK® model for Guidance Unit of the EKV[2]. 

 

 

6. EKV Dynamics Subsystem  
EKV Dynamics uses the same method as in ICBM Dynamics. The initial parame-

ters are read from the workspace by the lookup tables. These initial parameters include 

the initial propellant mass and the initial EKV state vector. The subsystem takes the guid-

ance command input from the guidance unit and applies it to EKV Dynamics. The EKV 

dynamics subsystem moves and steers the EKV towards the ICBM during its flight and 

returns an EKV state vector as the output. This output is also carried to the seeker subsys-

tem by a feedback loop in order to model the INS/GPS unit of the EKV.  
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Figure 13. SIMULINK® model for EKV Dynamics[2]. 

 

The flow chart of the SIMULINK® model and the MATLAB® functions are pro-

vided in Appendix A. 
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VI. COMPARISON OF GUIDANCE LAWS  

In this section, a three-dimensional SIMULINK® model is developed and the 

simulation is tested for the different guidance laws. It summarizes the miss distance, total 

control effort and intercept time. The acceleration limiter is set to 2300  m s to prevent 

applying forces that the EKV cannot hold. 

 

A. SIMULATION RESULTS FOR PROPORTIONAL NAVIGATION GUIDANCE 

The navigation constant N is selected as five based upon the trade-off simulation 

for the given target and missile velocity and target acceleration[11][12][13]. The trade-off 

simulation considers the miss distance, guidance command profile and intercept condi-

tion. The acceleration limiter is set to 2300  m s to prevent applying forces that the EKV 

cannot withstand. The velocity vector of the EKV at the beginning of the interception is 

not towards the ICBM, which results in an unfavorable closing velocity. The miss dis-

tance, total control effort and intercept time are shown in Table 4. 

Table 4.  Performance index of PNG. 

The command acceleration and trajectory profile are shown in Figure 14. 

 

 

 

 

 

 

Figure 14. Guidance command and trajectory of PNG. 

Miss distance 

(m) 

Total control ef-

fort(m/sec2) 
Intercept time(minute) 

PNG 

0.06 20,600 2.8 

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

Time in minutes

A
lti

tu
de

 in
 k

m

Altitude of the EKV and the ICBM

 

 
EKV Altitude
ICBM Altitude

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300
Lateral Acceleration Encounterd by the EKV

Time in minutes

A
cc

el
er

at
io

n 
in

 m
s-2



 28

 

B. SIMULATION RESULTS OF THE PREDICTIVE GUIDANCE 

 

1. Predictive guidance with zero-effort-miss using LOS rate of the seeker 

It has almost the same performance as the proportional navigation guidance. The 

summary of the performance are shown in Table 5. 

Miss distance 

(m) 

Total control effort 

(m/sec2) 

Intercept 

time(minute) 
Predictive guid-

ance using LOS 

rate of seeker 0.05 20,500 2.75 

Table 5.  Performance index of predictive guidance using seeker LOS rate. 

In the predictive guidance using time-to-go information, we need to investigate 

the sensitivity of the time-to-go error.  Time-to-go information has a great effect on the 

performance of predictive guidance[14]. The miss distances with respect to the time-to-

go error are shown in Table 6.  

Time-to-go error(sec) Miss distance(meter) 

0 0.05 

1 0.25 

5 0.4 

6 1.0 

7 1.5 

8 2.1 

9 2.5 

10 10.0 

Table 6.  Miss distance w.r.t time-to-go error in predictive guidance using seeker LOS 

rate. 
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The command acceleration and trajectory profile are shown in Figure 15. 

 
 
Figure 15. Guidance command and trajectory of predictive guid-

ance using seeker LOS rate. 
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in Table 7. 
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Table 7.  Performance index of predictive guidance using zero effort miss prediction. 

 

Performance of predictive guidance using time-to-go information is critically re-

lated to the time-to-go error. The miss distance with respect to the time-to-go error is 

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

Time in minutes

A
lti

tu
de

 in
 k

m

Altitude of the EKV and the ICBM

 

 
EKV Altitude
ICBM Altitude

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300
Lateral Acceleration Encounterd by the EKV

Time in minutes

A
cc

el
er

at
io

n 
in

 m
s-2



 30

shown in Table 8. It would not be implementable in the presence of time-to-go error, 

even though it has very accurate guidance and reduced intercept time. 

 

Time-to-go error(sec) Miss distance(meter) 

0 0.01 

1 17 

2 47 

3 89 

4 144 

5 200 

Table 8.  Miss distance w.r.t. time-to-go error in predictive guidance using zero effort 

miss prediction. 

The command acceleration and trajectory profile are shown in Figure 16. 

 
 
Figure 16. Guidance command and trajectory of predictive guid-

ance with ZEM prediction. 
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 PNG 
Predictive 

(1) 

Predictive 

(2) 
Bang-Bang

Miss Distance (m) 0.06 0.05 0.01 24 

Intercept Time 

(min) 
2.8 2.75 2.5 2.55 

Total control 

 effort ( 2m s ) 
20,600 20,500 21,900 35,000 

Table 9.  Overall summary of the performance indices.  

 Predictive(1) : Predictive guidance with zero-effort-miss using LOS rate of the seeker 

 Predictive(2) : Predictive guidance with zero-effort-miss prediction using target 

                           and  missile velocity and range  

The trajectory of the target/EKV and total control effort are shown in the same 

plot in Figure 17 with for all of the guidance laws. 
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(b) 
 

Figure 17. Comparison of trajectories(a) and total control ef-
forts(b). 

 

 

D. LAUNCH ENVELOPE 

 

 The launch envelope is defined as the window between the minimum and maxi-

mum times that a successful EKV launch can be made and still intercept the target ICBM 

during boost phase[15]. The times are reported as a window in seconds, with zero being 

taken as the time of the northerly crossing of the equator by the space-based EKV carrier.  

The allowable launch envelope depends on the guidance law. In these simulations, pre-

dictive guidance demonstrated shorter intercept times on average, giving a larger launch 

envelope, than did proportional navigation guidance. The criterion used to compute the 

launch envelope was the flight time from launch to intercept when the intercept could oc-

cur within the 3.5 minute boost phase of the ICBM trajectory. Table 10 shows the launch 

envelope for proportional navigation guidance and predictive guidance using zero effort 

miss prediction and no error in time-to-go estimation. 
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PNG PREDG(2) Allowable launch zone (time 

elapsed after space EKV carrier 

ascending start at equator) 1749 ~ 2007 seconds 1685 ~ 2040 seconds 

Table 10.  Allowable launch zone of PNG and PREDICTIVE(2). 

Predictive guidance with zero effort miss prediction (and zero time-to-go error) 

has a launch envelope that is about 38% larger than the proportional navigation launch 

envelope, providing broader coverage by fewer space-based EKV carrier platforms. 
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VII. GUIDANCE COMMAND GENERATION BY BURN 
TIME CONTROL OF DIVERT THRUSTER 

In previous sections, the guidance command was generated by the acceleration 

command loop. In EKV guidance, it actually uses the divert thruster to make a guidance 

loop of divert pulse generation with maximum thrust. It would calculate the velocity in-

crement to be gained in predictive guidance and proportional navigation guidance. The 

block diagram of this guidance loop is shown in Figure 18. 
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Figure 18. Block diagram of EKV guidance using burn time con-
trol[4]. 
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Boeing company has tried to use EKV guidance with predictive guidance using 

divert thruster and seeker line-of-sight rate. We can also consider the effect of informa-

tion delay related  to the pulsed guidance command in predictive guidance and propor-

tional navigation guidance. 

In this report, we tried this approach in the EKV guidance. However, the results 

show unsatisfactory miss distance and needs more investigation. It will help to add an  

autopilot algorithm in the controller. It would be recommended to work further. 

The simulation results are shown in Figure 19 - 21. The miss distance is forty  

eight meters using the maximum acceleration limit of thirty g’s. The total control effort is 

32,000 m/s2 . 

 

 
Figure 19. Trajectories and total control efforts with burn time 
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Figure 20. Zero-effort-miss profile with burn time control 

 

 

 

Figure 21. Pulse width of burn time with burn time control (up-
per:pitch, lower:yaw). 

0 0.5 1 1.5 2 2.5
0

50

100

150

0 0 .5 1 1 .5 2 2 .5
-1200

-1000

-800

-600

-400

-200

0

200
Y E M  &  ZE M

 

 
Y E M
ZE M

0 0.5 1 1.5 2 2.5
-300

-200

-100

0

100

200

300

Flight time(min)

Flight time(min)

Flight time(min)

A
cc. C

om
m

and(m
/s 2) 

A
cc. C

om
m

and(m
/s 2) 

ZEM
(km

) 



 37

VIII. SUMMARY 

This paper has explored the use of alternative guidance laws for EKV intercept of 

a hostile ICBM during boost phase. Proportional navigation guidance (PNG), bang-bang 

control guidance (BBG), and two forms of predictive guidance (PREDG) have been stud-

ied using computer simulation. The two forms of predictive guidance are the predictive 

guidance using seeker LOS rate (PREDG1) and the predictive guidance using zero effort 

miss with target and interceptor information (PREDG2). Simulation results have included 

missile and EKV trajectories, miss distance, total control effort, and intercept flight time. 

Trajectory modeling included gravity, the effects of the earth’s rotation, and at-

mospheric drag, as well as thrust acting on the ICBM and the EKV vehicles. Since the 

trajectory of the ICBM takes it into space, the earth‘s rotation plays a significant role on 

its impact point. All guidance laws were studied using a three dimensional intercept 

model. The ICBM trajectory data was generated using MATLAB and SIMULINK to 

generate the missile dynamics and flight trajectory. 

The guidance law that minimized the miss distance was predictive guidance with 

zero effort miss prediction using perfect target and missile information. PNG and 

PREDG1 had similar total control effort statistics, but BBG was higher. Interceptor flight 

times were lower for BBG and PREDG2 than for PNG, giving larger launch envelopes. 

However, when errors in time-to-go estimation were implemented in PREDG2, signifi-

cant miss distances resulted from guidance law, which would be devastating for a hit-to-

kill interceptor. 
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IX. RECOMMENDED FUTURE WORK 

For future work an investigation into the reason why the miss distance is large in 

the guidance using divert burn time control should be carried out. It will be necessary to 

add some control logic or to modify the Simulink program.  

Additionally, the system has inherent delays such as the guidance and control 

processor and sensors. It would have some performance degradation with these delays. It 

needs to study these effects and design a filter to compensate it. It also needs to consider 

the sensor measurement noises of the seeker and inertial measurement of the EKV, on-

board processing delays and divert thruster uncertainties.  
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APPENDIX A. CODE FLOW CHART 

This appendix contains the flow chart of the MATLAB® code for the ICBM tra-

jectory prediction and the SIMULINK® model for ICBM intercept with different EKV 

guidance algorithms. 
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